|
Темная миссия. Секретная история NASA. Страница 55
Увы, это действует не часто.
Хогленд сразу хотел отделить свою концепцию гиперпространственной физики от более ранних моделей одним особым способом — прогнозированием.
От того, будут ли его новые идеи подтверждены или опровергнуты, зависит, получит ли поддержку его современная версия революционных идей Максвелла. Для этого любая верная научная модель должна давать прогнозы, которые можно проверить опытным путем. К счастью, некоторые тесты гиперпространственной модели предлагались самими наблюдениями. В итоге Хогленд остановился на четырех дополнительных ключевых прогнозах, которые могли бы определить содержится ли в Сидонии «тетраэдральная физика» и может ли быть опровергнута итоговая «гиперпространственная модель». Все эти тесты неизменно имели в основе один, в некотором роде необычный, источник.
Вращательный момент
Сначала Хогленд сосредоточился на аномальном тепловом излучении планет, которое он наблюдал вместе с Тораном. Поскольку в трехмерном пространстве по законам термодинамики Кельвина и Гиббса вся энергия, в конце концов, «вырождается» в беспорядочное движение, а затем «энергия деформации» эфира (вакуума) высвобождается внутри материального объекта, то даже если это сначала проявляется в когерентной форме, в конце концов, она деградирует в простое беспорядочное тепло, которое, в конечном счете, излучается в пространство в виде инфракрасного избытка. В итоге любая энергия, из какого бы источника она ни происходила, выглядит одинаково.
Поэтому Хогленд сосредоточил свое внимание на изначальных астрофизических условиях, при которых этот «максвелловский космический потенциал» может высвобождаться внутри планеты или звезды. Он хотел спрогнозировать определенные признаки, которые однозначно указывали бы на источник излучения энергии как гиперпространственный, противоположный «обычному» трехмерному, эффект.
При изучении аномального инфракрасного излучения сразу же становится понятно: инфракрасный избыток гигантских планет очень хорошо коррелирует с одним общим для всех них параметром — их общей системой «вращательного момента».
В классической физике масса тела и скорость, с которой оно вращается, определяют «вращательный момент» объекта. В гиперпространственной же модели все выглядит немного сложнее, поскольку объекты, находящиеся на расстоянии друг от друга в обычном мире, в четырехмерном мире на самом деле соединены. Таким образом, в гиперпространственной модели что-то всегда добавляется к орбитальному моменту гравитационно привязанных спутников объекта — спутников относительно планет, планет относительно солнц или звезды-компаньона в системах двойных звезд.
Предыдущая страница
Следующая страница
|
|